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Abstract.TheYork mappingfrom thespaceoffreelychosenconformaldata to the
spaceof constraint-satisfyingphysicaldata is shown to be a canonical transforma-
tion for both thevacuumEinsteintheoryandtheEinstein-Maxwelltheory.

INTRODUCTION

Building on funcamentalwork of Uchnerowicz and Choquet-Bruhat,in
the early 1970’s, York and coworkersdeveloped a program for solving the

constraintequationsof Einstein’s theory.The original workis containedin York
[1971]; for a survey plus additional references,see Choquet-Bruhatand York

[1980]. In the vacuumcase,one may think of this procedurein termsof a map
from the spaceT~..,t(E)of metricsA on a 3-surface~ andtransversetraceless

conjugatemomenta a, to the space~ of gravitational initial data (~,~)
having constant mean curvature r and satisfying the constraintson ~. In the

non-vacuumcase (including, e.g. the Einstein-Yang-Mills theory) the procedure

is roughly the same, althoughthe domain and rangespacemustbe bigger (they
include the nongravitationalfields along with thegravitationalones).

Since the York map was largely motivated by Hamiltonian considerations,it

has often been speculated(for examplein Fischer and Marsden[1979]) that
is a symplectic(i.e., canonical)map.We proveherethat it is.

In the elementaryexamplesfamiliar from classicalmechanics,canonicaltrans-

(*) Researchpartiallysupportedby NSFgrantMCS 81 -07086.
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formations are usually nondegenerate(locally invertible). This is not the case

withq~f : Tj4..//f-÷~, as evidencedby its invarianceunderconformaltransforma-

tions. Also somewhatdifferent from the usual simple examplesis the fact that

both thedomainandrangeof arepresymplecticvarieties(manifoldswith singu-
larities andwith a degeneratesymplecticform) ratherthansymplecticmanifolds.

If, however,we quotient out by the action of appropriategroups (discussed

below) we obtain reduced spaces.9YOIkand which are symplectic (though
still containing singularities), and we obtain a reduced York map [~] which

is nondegenerate(invertible). Since~ is the spaceof gravitational degreesof

freedom (see Isenbergand Marsden[1982]), this reducedmap providesan equi-

valent, simpler spaceto representthese degreesof freesom.Theseresults also
establish the compatibility betweenthe York [19731 field decompositionand

that ofMoncrief [1975].
This paper is entirely directed toward proving that the York map is symplec-

tic: We define the importantspacesof fields and their reductions,describethe

York map, estabilshits properties,show that it reducesproperly,and thenstate

and prove the result. We do this first for the vacuum Einstein theoryand then
for the Einstein-Maxwellequations.Someapplicationsof the results herein to

other connectionsbetweenthe conformal and <<ADM~picturesare planned for
a futurepublication.
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1. THE VACUUM EINSTEIN CASE

A) Spacesof FieldandGroup Actions

For simplicity, we shall work in spaceof C~°fields; this canbe generalized
to Sobolev W5’~or Holder C”~ spaces(weighted for nonspatially compact
spaces)in a routine fashion following Fischer and Marsden[1979], Choquet-

-Bruhat, Fischer and Marsden [1979], Choquet-Bruhatand York [1980] and
IsenbergandMarsden[1982].

Fix an oriented connectedsmooth 3-manifold ~ and define the following
spaces:

the spaceof all Riemannianmatncs‘y on ~. In local coordinates
on ~ we write y

11(x)for ‘y.
T*,~(~) the naturalL

2 contangentbundleof...t(~)consistingof pairs (‘y, ir)
of Riemannian metrics y and symmetric contravananttensor
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densitiesir; in coordinateson we write (‘y~,ir1’) for (‘y, 71). [we
shall alsofind thenotation .t : = useful].

the subsetof T*~#(~)which satisfiesthe vacuum Einsteincon-
straints:

(1) 0=,9~(y,7r)=b
77r; or

1 1
(2) 0 = ~C(’y,ir)=—pR + ir~’

27r~
2—— (tnT)

2 —

2

ans alsosatisfiesthe constantmeancurvaturecondition:

(3) — trir=r
2j1

(for someconstantr).
T~,.A’(~) the subspaceof T*,.#(Z) consisting of pairs (A, a) E

for which

(4) tra=0

and

(5) 6~u=0.

The space T*..4?(~)is a (weak) symplectic manifold. We identify tangent

vectors to~,ff(~)at ‘y with symmetric covanant two tensorsk and denotethe
pairingbetweenvectorsandcovectorsas

(6) (ir,k)= ir~k

where 71 k = ir” k
11 is the naturalcontraction,producinga density.The symplec-

tic form fl at (‘y, ir) is thentheskewform

(7) fZ((k1, irk), (k2, ~ = ~2’ k1) — (7r~,k~)

which is the canonical symplectic form on T*~#,(cf. Abraham and Marsden
[1978], p. 178 -9). This same &2 defines a presymplecticform on ~ and

T~.Jl(~)by restriction.

In additionto thesespacesof geometricfields, we shallneed
— thegroupof diffeomorphismsof ~ and
— thespaceof positivereal-valuedfunctionson

which generategroup action on the abovedefinedspacesas follows: The group
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~(~) actson..~(~)by pull-back

(8) (77,7) ~77*7

This (right) actionextendsnaturally to a symplecticactionon T*J1

(9) (~,(‘y 7r)) I-+ (77*7, 77*~)

Since‘1(’) and T~Ii1~)are both mappedto themselvesby this action, we

regard~(~)asactingon themas well.
The set 8(s) forms a group underpointwisemultiplication. Thisgroup acts

on.II’(~)by

(10) (0,7)-+0~7.

the inducedsymplecticactionon T*4’(~) is

(11) (0, (~,~))~ (0~,~

Since T~A~) is mappedto itself by this action,we canregard ®(~)asacting

on it. Note that is not mappedto itself by the actionof ®(~).
Now consider

(12)

the semidirectproductof ~(~) and �~(~).Thegroupmultiplication is

(13) (flp 0~). (p2’ 02) = (~i °~2’(0~° ~ 02).

Clearly G actson (~),via

(14) ((fl,O),~y)~+0~l77~I~7,

and also on TtH(~) and T~(~) in the obvious way. In view of the identity

(15) 027~(01~y)= (0~0772) 02(771 0

we see that ~ acts on the right on all thesespaces(again, excluding ~

As noted in the introduction, certain reductionsplay an important role in
our analysis.The first one we consideris the reductionof Tj. .A” (the domain

of the York map)by the actionof~.The keyhereis the recognitionthat

(16) T*~#(~)=J~(0),
TT

where is themomentummap

(17)

correspondingto the action of ~ on T’t.#(~), and g is the Lie algebra of G:

g = (vector fields) x (scalarfields)
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and~ is its naturalL2-dual:

= (oneform densities)x (scalardensities).

To verify (16), we computeJ from the generalformula for the momentumof a
cotangentlift (seeAbrahamandMarsden[1978, p. 283]) and find

(18) 4(7, ir) = (2~
7ir,tr ir)) = (2V1~r”,ir’1);

then (16) is obvious. It now follows from the reductiontheorem(see Marsden
andWeinstein[1974]) that thequotientspace(1)

(19) ~York_TTTJ’~

is a symplectic manifold (almost everywhere),whose symplectic form is
inheritednaturally from ~2on T”~J#.

The otherreductionweneed,that of~~by the actionof~,is not so obviously
a symplecticmanifold. To seeroughly that it is, we note that is the zero set
of the momentummap correspondingto spaceplus time diffeomorphismsacting

on T*.#, with theadditional conditionthat all points (y, ir) E ~ satisfy tr ir/2~i=
= r. This latter condition freezesthe time translations.Henceif we factor out
the spacetranslations,

(20)

becomes(almost everywhere)a symplectic manifold; again, with symplectic

inducedfrom f2 on T*Jl’(see Isenbergand Marsden[1982] for a more rigo-
rous discussionof this reduction).

Note the caveat <<almost everywhere>>appearingboth with ~ork and
remindsus that both~oik and havesingularities(i.e., they are bothstratified
manifolds).Their singularitiesare inherited from T~’T..~Nand~f respectively,they

are presentevenbefore the quotientoperation.See FischerandMarsden[1977],
Arms, Marsdenand Moncrief [1982] and IsenbergandMarsden[1982] for discus-

sion of thesestratifiedstructures.

B) TheYork Map andSomeof Its Properties

For any chosen constantr, theYork proceduretakesdata (A, a) E T~’~..#(~)
into data(‘y, 7r) E ~ by solving the Lichnerowiczequation

R 1 1
(21) V

2Ø= — ~— — O~Uabt/J7+ — T2~5
8 8112 12

(1) Since thespacewe shallbe really beworking with is abit smallerthan T
2~!J.M/G (see § 1 .B,

below),we includethe e—~>>here.
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for the positivescalar~(hereV 2 R,p, and thecontractionson a areall construc-
ted from A) and then forming

(22)

and

(23) sr=q5~a+ —IIA’r
2

oneeasily verifies that the Einstein constraintequations(1) and (2) are satisfied
by any set (y, r) constructedin this way.(Theidentity

(24) R(~
4X)=Ø4R(A)—8Ø~5V2~

is useful for this verification).

The York procedureis definedat (A, a)E Tj.~’~JH(~)iff Eq. (21) hasa unique

solution for that choice of data. While there are points (A, a) of T~.~K(~)for
which this fails, York and O’Murchadha [1974] show that the Lichnerowicz

equationhas unique solutions on an open densesubset(2) of T~’~Jl(~),which

we shall call 1~./i~(~). This wehavea well-defined map

(25) ~ :TT.~*~(~)_*~T(E)

whoseaction is specifiedby Eqs.(21)-(23).

Wenow discussa numberof importantpropertiesof the York mapy~.
They arepresentedin the form of a seriesof lemmas.

LEMMA 1. (Sur/ectivity).~ : T~’TJIo(~)-÷ is a surfectivemap.

Proof Let (‘y, ir) be a set of datain ~ Define A = ~ and a= iT— 2’y~/3rp.

Since tr ir = 2pr (by definition of ~) and since~‘(X, a) =.9~’y,ir) = 0, we see

that (A, a)E ]~r*T.///.We easily verify that a = 1 solvesthe Lichnerowiczequation
for this (A, a) and thusfind that~(A,a) = (y, ir).

(2) While the exact form of T~t~4’
0(~)hasnot yet beendetermined,we do know the fol-

lowing:

r ~ 0 case: if a isnonzerofor at leastonepointx E ~, then(A, a) E T~~’0(~)

If a = 0 on ~ and if there exists a conformal factor 8 suchthatR(8
4X)~ 0 for

allxE ~, then(A, a)ET~4I’
0(~).

r = 0 case: If thereexistsaconformal factor 8 suchthatR(8
4X) s 0 for all A E ~, the (A, a)E

E T~,.1~’
0(E).
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LEMMA2. (® Invariance). For any (A, a) E T~’T.4(~)and any 0 E ®(~),one
has

(26) c&~04A,0~~)=q~~(A,a).

Proof Suppose~ solves the Lichnerowicz equation for (A, a). Then we claim
that ~= (1/0) ~ staisfies the same equation for (04A, 04a). Clearly if we prove

this claimthen the lemmais proven.

Let X = ü~A, ö = 0~a, and let k, V, ~i,denotethe quantitiesdefinedfrom

X. Then~mustsatisfy

1~2
(27) V2~——~— — — ~7+ — r~.

8 8 11 12

Using Eq. (24) as well as the more obvious transformations,and multiplying
throughby ~5, we transformEq. (27) into

1 1 02 1
(28) o5V2~+(V20)~ —R(0~)—— — (0~)~+ —

8 8 /12 12

Now

1 a ___ a
____ — V’detO4AO4A” —~

V’~~O~Aax’ ax’

1 a
= — — 02

11A”
06/1 ax’ ax’

1 — 2 —

(29) =—V
2~+—V0V~.

Thus

o5V2~+(V20)~=0V2~+2(V~) (V~)+(V20)~

(30) =V2(~),

so we have

1 1a2 1
(31) V2(0~)= —R(0~)——— (O~)’+ — r(0Ø)~.

8 8/12 12

Since, by assumpition(A, a) E T~’TJIo(E),the solution of (31) mustbe unique.
ThereforeO~=4,, aswasto be proven.
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LEMMA 3. (D Equivariance). For any (A, a) E Tj~’T4(~)and any 77 E~(X),
onehas

(32) q~,(77*A,n*a) = 77*y (A, a).

Proof The scalar curvatureand Laplaceoperatorsare both covariant. Thus if
4, satisfies the Lichnerowicz equation for (A, a) then 77*4, = 4, 0 77 satisfiesit for
(~*A ~*g). The result then follows.

Lemma2 showsthatq~çcannotbe one-one.To compensate,however,it permits

us to define a reducedversionofQj on T7~’T4(~)/O.Further,from Lemma3, we

can reduceby ~, anddefine

(33) ~] : T#0(~)/~ -~I~

We have earlier identified as the stratified symplecticmanifold ~. As for

the domain, this resembles~,ork,but it involvesT~TJHO(~)ratherthan7’2.Jl(~).

Howeversince T’~.hN0(�~)is invariant under~, the same considerationsused
earliershow that

(34) ~York =

is also a stratifiedsymplecticmanifold.Thus Wehave

(35) [~~I] :~~+~•

LEMMA 4. (Bijectivity of [Q3~]).Themap [~] is one-oneas well asonto.

Proof The reductionprocedurepreservessurjectivity,so weneedonly demostra-

te that [q~ç]is one-one.In this proof (aswell as in later discussions,we shall use
brackets[ ] to denoteequivalenceclasses(underf~in the domain;under~ in

the range).
Now supposethat

[~ç](A,a) = [q](X,a).

By definitionof [~2j(,.],it follows that

(37) ~(Ø4A,~4a+ — ~ ~2X_l~r)1.

This implies (by definition of the equivalenceclasses)that thereexistsi~E~(~)
suchthat

(38)
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and

2 2
(39) 71* 4,4~ + — Ø2A~/1r= ~ —

3 3

If we define 0 : = 77* Ø/Øthen(38) becomes

(40) X=04
77*A.

Concentratingon the secondterm on both sidesof (39), we find

2 2
71* — 4,

2A~
11r= — (~*4,)

2(n*A)_l(n*/1)r
3 3

2
= — 02Ø20~4X106ir

3

2
(41) =_~2~_1~r

3

Hencewe can cancelin Eq. (40), andobtain;

(42) n*4)-40 =

which implies

(43) =

Equs(40) and(43) togetherstate

(44) [(A, a)] =

so [q~i]is one-one.

C) The York Map is Symplectic

Our main theorem(for the vacuum case)is the following.

THEOREM. (Vacuum Einstein Case). Themapsq?4: T~/#
0-+~~’and [q31]:l~k-+

are both symplectic(3).

The restof this sectionconstitutesaproofof this theorem.

(3) Where TfPTA’O re~1~.1~aresingular [i.e.,for (A, a)with a simulteneousconformalkilling
vector field] the statementis true in the stratified sense.
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We first wish to establish that ifc?3ç is symplectic, then so too is ~ This

turns out to be essentially a consequence of the following result:

LEMMA 5. Symplectivityof ReducedMaps.Let(]~,w1) and (P2, ~ besymplec-

tic manifolds. Let G. be a group acting by canonical transformationson P, with

Ad*~equivariantmomentummap .1, :J~ -~g7, for i = 1,2. Let .F~=..y
1(0)/G.

denote the correspondingreducedspace (which, according to Arms, Marsden

andMoncrief[1981], mayhavesingularities).Let

(45)

bea givenmapping(smoothat nonsingularpoints).
Let k : G

1 -~- be a surjectivegroup homomorphismand suppose4’ is k-

-equivariant:

(46) ‘P(g1 . p) = k(g1) .

for g1 E G1 and p EJ~’(0).Then the inducedmap [4’] P1 -÷P2is symplecticif

andonly if

(47) w1(v,w) = w2(T4 v, T4, . w)

for all v, wE T~Jj~(0)C T,,P~.

Proof This lemmafollows readily form the definitionsof the reducedsymplec-
tic forms on P1 and P2. [Note that the action of on v, w ~ T~J~’(0)isirrelevant

to what happenson the reducedspaceI.

As a (slightly indirect)consequenceof Lemma5, we have

COROLLARY 6. Ifq~I~is symplectic,then [~] is symplectic.

Proof If we choose P1=T*~, G1=~,Pl=~orkPl=T*~4if~G2=~,P2=~,

k: ~x -+ ~ (by projection) and 4, =9y,., then Lemma 5 almostapplies.There

are just holes to patch: Firstly we have ~York = Tj~/f0/~g’~ J1(0)/~ (because
of thepointsof T~’~...#atwhichc~y~.is not defined).

Secondly,we have = ~ *J2(0)/~’g (because of the super Hamiltonian

constraintwhich is included in the Einstein equations). However, since (as we

have seen) ~ and ~York are both symplectic (stratified) manifolds in spite of

thesecomplications,thenin factthis corollarydoesfollow from Lemma5.

The most straightforward way to completethe proof of the theorem is to

consider a general pair of vectors and E2 tangent to TJ~’TJIOat a general point
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(A, a) [i.e., ~, ~ E T(X~)Tj~T./l/0] and verify directly by a brute-forceand lengthy
calculationthat

(48) ~2(Ty7*(~1), Ty~’(~2))= ~~l’ ~

This method,which reliesupon the linearizationof the York map,is in fact how

we first provedthe result. Howeverthereis anotherwayto proceedwhich shows
more clearly why the result is true. This alternative way, which we shall use,
splitsq~çinto the compositionof two maps:The first is almost anextendedpoint
transformation(i.e., cotangentlift) while the other is a fiber translation.Both

of the mapswill be shown to be canonical,andhencethe compositionQ3çis also.
Thetwo mapsweneedare

~ ~T~T 0

(A, &) ~-~- (4,
4A, Ø4a)

where 4, satisfiesthe Lichnerowicz equation (21) (for some constantr), and

~50)

(A,ir) -+ 7,7r+ —71/1T -
3

One easily verifies that both and .12 are~-equivariant, that is ~-thvariant,
and an assortmentof other properties.Of more immediate concernis the fol-

lowing.

LEMMA 7. [TwoStepYorkMap].
a)~=fi~o~11’

b) if Wr is symplectic and ~ftris symplectic, then~j/
7 is symplectic.

Proof Part a) is verified by calculatingthe compositionof (49) - (50), andcom-

paringwith (22) - (23). To provepart b), we do somestrightforwardmapchasing
recalling that the symplectic form on T~’T./#Qand on is that inducedfrom

•

We now show that the maps both symplectic.We start with fI.~,. (since it is
the easierone to check).

LEMMA 8. [~ is symplectic]. The map~i~T’~#—~T*.Afpreservesthesymplectic

formfZonT~#.

Proof The actionof~1.[seeEq. (50)~clearly leavesthebaseof T*...#alone;so it
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is a fibre translation.To show that the amount of translation— -~- ‘y_~/2r—

is in fact the exactdifferential of a function f :Jl’-÷IR, we consideranarbitrary

k E 7.,#andcalculate[using thepairing given in Eq. (6)] (4)

2 ~2 ~2 r4 I
(51) (—7’/1r,k )=) —/1ry~k =j —/1rtrk=D [_rj/1]k3 3 3 73 j

Hence 71pr =Df=D[~ ff
11]. But if~ isa fibre-translationby an exact

differential, then it mustpreservethe symplecticform (seeAbrahamandMarsden

[1978, ex. 3.2E, p. 186]).

LEMMA 9. [~ is Symplectic]. The map #‘~I : ~ T~T./#Opreservesthe
symplectic form ~2on T2~’T.~.tO.

Proof If 4, dependedonly on A, then#‘7~.would bea cotangentlift and therefore
automatically be symplectic. But 4, depends upon a as well as A, so we must

verify the preservationof &2 by explicit calculation.

Let ~p ~2 E T(X o)
7~TT~1O’so we canwrite (5)

a a a a
(52) ~

1=h1~ — +k1- — and ~2=h2- — +k2~ —

aA a~ aA aa

Since is tangentto T~’TJ#O,itscomponentsh1 and k1 mustsatisfy

(53) h1a+A-k1=0

which follows from the linearizationof the tracelesscondition. (Thereis also a
constraint on h1 and k1 which follows from the transversecondition, but we

won’t needit). The componentsof ~2 obeysimilar constraints.

Theactionof thetangentof’#ç is easily calculatedto be

a a
(54) (T*ç)[~] = (4,

4h~+ (D
1Ø

4)A) . — + (4,4k~+D
1 (Ø

4)a) - —

(4) In languagemorefamiliar to physicists,we calculate
~_f±rv~= _ry~1v~

3 3

toshowthe samething.
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(for i E {1, 2}). Plugging this into ~2, which we may write symbolically as

(55) ~2= da~dA,

we get

&~(~~[~i], T~[~2])=

=f{[~4hi+D1(~4)A] -[4,
4k

2+D1(4,
4)a]-[1,2]}

where <<[1, 2]>> meansthat the second term is obtainedfrom the first by inter-
changingthesubscripts1 and2. Expandingout this first term,we get

- [4i4k
2+D1 (4,~)a] =

=h1- k2+ Ø
4D~(4,4)h

1 - a + Ø
4D

1 (4,
4)A- k

2+D1(4,
4)D

1(4f~
4)A-u

(57) ~

(using tr a = 0). Thenpluggingbackinto (56), wefind

~ ~ = f {h~-k
2—h2~k1— 44,’(D1 4,)[h1- a + A- k1]

+ 44,
1(D~ 4,)[h

2~ a +A k2]}

=f[hi.k2_h2.k21

(58) -&2(E1,E2)
where we have used Eq. (53) to kill the 4, dependent terms. Hence f2 is preserved

by~.

This completesthe proof of the theorem.Two aspectsof it are worth noting.
Firstly, while the proof uses the condition tr a = 0 as well as its linearization,it

(5) In coordinates,this is

~= fd3x hlb(X)[ö +k~(x) ila~(x)]
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does not use the condition 6a = 0. Of course ~a = 0 is neededfor~?}çto map

into ~‘, and ~a = 0 is neededfor the reduction,but we neveruse it explicitly
in showing thatqj/ (or Wr or .fl) is canonical.Secondly,the proof also uses little
of the explicit form of the Lichnerowiczequation.Again, the exact form of
this equation (21) is critical ifq~çis to map into but we don’t needit in the

proofthat the symplecticform is preserved.

2. THE Ell~STEIN-MAXWELL CASE

The York map is easily extendedinto a procedurefor solving the constrained
equationsof many Einstein-sourcefield theories:e.g.,Einstein-Maxwell,Einstein-

-Yang-Mills, Einstein-Dirac,Einstein-Higgs,and Einstein-fluid. (SeeIsenbergand

Nester [1977]). One might expect that for many of these theories, the map is
still symplectic. At least for Einstein-Maxwell and Einstein-Yang-Mills, this is

the case. We show this here, following roughly the same order of discussion as

in the last section (leaving some of the trivially duplicatedsteps).For simplicity,

we do only theEinstein-Maxwellcase.
Before proceeding,we want to emphasizethat the map which provesto be

symplectic in thesenonvacuumtheoriesis not that which involves solving the
<<LW>> equationalong with the Lichnerowiczequation.The LWpart of the York

procedure(which is used to obtain the longitudinal part of the gravitational

momentum)does not preserve&2. We get a symplectic map by starting with
data obtainedafter solving the LW equation.We shall see this illustrated in

the Einstein-Maxwell theory, and comment further after the proof has been

completed.

A) Spacesof FieldsandGroupActions

We work on a principal U(l) bundle over E (our orientedconnectedsmooth

3-manidold).In additionto the spaces...#I(~)and T*Af(~) introducedin the last

section,we shalluse the following spaces:
the spaceof U(l) connectionsAonZ; locally, we write the com-
ponentsof A asA1(x)and regardit as a one-formon

T*A the L
2 cotangentbundle of A, consistingof pairs (A, Y), where

locally we regard Y as avector field density,and denoteits com-
ponentsY~(x). The electric field is E = — Y/p.

T~’A the subspacesof T*Aconsistingof pairs(A, Y) for which

(59) ~Y=0

[Note that condition (59) depends upon a choice of metric (or

volume element). It is independentof A (this is not the casefor
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non-AbelianYang-Mills)].
ç~EM The subset of T*..%~’xT*A which satisfiesthe Einstein Maxwell

constraintequation:

(60) 0=5(7,ir,A,Y)=~Y

(61) o=.9~M(y,iT,A,Y)=_26iT_YxB

1 1
(62) 0 = ~EM(7 ir,A, Y) = — 11R + 1T”~1TkQ~— (tr ir)

2 —

2

(62) +
2/1 2

and also satisfies the constant mean curvature condition (3).

[B = dA is the magneticfield 2-form and Y x B = YB
1J in index

form].

~EM the subset of T*~x T*A which satisfies conditions (59), (60)
and has vanishing tr iT, but generally fails to satisfy condition
(61).

Thegroupswe need,in additionto~(~) and ®(~),are

Aut (Z) the group of automorphismsof the U( 1)-bundle ~. Note that
each I/i E Aut (Z) covers an element 77 E~

Autld(Z) the subgroupof Aut(Z) consistingof all thoseelementswhich
coverthe identity in ~ [Theseare often called the <<pure gauge

transformations>>].
and~EM(~) thesemidirectproduct

(63) ~EM(n) : = Aut(Z) K

Note that ~EM(li~) is isomorphic to the direct product~(~) x
x Autld~

With all thesegroups and all thesespaces,we have lots of group actions.The
actionsof most immediateinterest here are that of Aut(~)on T*.Jf x T*A and

(gEM and that of~EM(Z)on T’t4~tx T*A and~EM.Aut(Z)’s action is the stan-
dardpullback.Its momentummap ~AUt(~) is found to be

(64) ~

~ is the subset of J~(...)(0) with the added conditions that ~fEM vanishes

and that -~-~ = r. As with for the vacuumEinsteintheory, the tr iT condition
2/1

freezesthe actionof the time translationswhich are generatedby ~EM andhence
onecanshowthat



100 JAMES ISENBERG, JERROLD E. MARSDEN

(65) ~EM : ~gEM/~u~(m)

is a (stratified) symplectic manifold. The symplectic2-form for~Mis obtained

(by pull-back and quotient) from &
2EM, the naturalsymplectic2-formon T*~t x

x T*A.

The action 0f~EM on T*~x T*Ais obtained by extending ~(~) to T*.IIx
x T*A via

(66) (0,(7,ir,A, Y)) -~-(0
47,0~4iT,A, Y),

and then combining the action of 9(’) with that of Aut(Z) as per the semi-

direct product.The resultingmomentummapis

(67) J~~(
7,ir,A, Y)=(~Y,2~ir+ YxB, trir),

so the space~EMis the zero set of
4EM~This permitsa straightforwardreduc-

tion (via the reductiontheorem),so

(68) =~
9EM1~EM

is a (stratified) symplectic manifold. The roles of~~kand~Min the York

proi~edure are clearly presagedby thenotation.

B) TheYork Map

The York procedure(as we define it here) for the Einstein-Maxwell-theory

takesdata (A, a,A, Y)E~EMinto data (-y, ir,A, Y)E~~Mby solving the modi-

fied Lichnerowiczequation

R 1 1 [1Y
2 1 1

(69) 724,= — 4,— — a- a4,~+ — r205_I_ — + —B2p103
8 8p2 12 L2~i 2 J

and the setting ~ = Ø4A, iT = 4,4a +
11A

1T, with A and Y left unchanged.
As in the vacuumEinstein case, the procedureworks for an open densesubset

of~EM(Z) which we shall cal1~
1~M(Z)(See Isenberg,O’Murchadhaand York

[1976]). Wethus have a well-defined York map

(70) EM:~1M~.(gEM

The properties0f~1~Messentially mirror those ofq~ç.We collect them in the

following lemma:

LEMMA 10. (Propertiesofq~M). q~iEM is surjective, e(~)-invariant,and Aut(Z)-

-equivariant.

Proof The verification of thesethreepropertiesvery closely follows the proofs
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given for Lemmas 1, 2, and 3, so we omit the details here. WithA and Yinvariant

underq~’EM it is not surprisingthat no new complicationsarise.

From Lemma 10 and the discussion of reduced space given above, we are

led to define a reducedYork map

(71) [q~fEM] :=~÷.~?7~M

(with~ .~~EM/~EM) We thenhave

LEMMA 11. (Bijectivity of ~EM]) The map [q~fEM] is one-oneas well as onto.

Proof Follow the stepsoutlined in Lemma4.

C) TheYork Map is Symplectic

Ourmain resulthereis

THEOREM.(Einstein-Maxwell Case). The mapsq~iEM:~M ~ gEM and

~ ~ areboth symplectic.

Proof We start by arguing that ifq~ç~M is symplectic, then so too is [q~fEM]. This

is essentially a corollary of Lemma 5, with P1 = T*M x T*A, G1 = ~EM p1 =

9York,P2T~’xTA, G2=Aut, pEM k:AutxO-*Aut (by projec-
tion) and 4, =~3ç.The samecomplicationsdescribedin Corollary 6 arise here,

andare handledessentiallythe sameway.
Next, we carry out the split ofc3.’ : Wedefine

~cEM :~M .~EM

(72) (A,a,A,E) F-÷(4,
4A,4,~4a,A,E)

with 4, satisfying Eq. (68), and also

~EM:T*~fXT*A~T*J1XT*A

(73) (y, iT,A,E) ~ iT + (2/3)7~/1r,A,E).

Clearly

(74) q~/EM~flEMO.~cEM

andclearly iffl~M and~M areboth symplectic,thenq~çEMis as well.

Themap~~Mmay be written as

(75) ~EM..~XId
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Hence, since~ is symplectic (see Lemma
9),~EM mustbe also.

For~~’~M,we don’t have such a simpledecomposition(both becausethe do-

main doesn’t split, and becausethe scalar 4, dependsupon A and Y as well as
upon A, and a). So we mustagaincalculatedirectly.

Let ~, E~~~0(Z), so we canwrite

a a a a
(76) ~.=h1~ — +k1- — +a1- — +e1- —

aA aa aA a).’

for i E {l, 2}. Thetangencyconditionsrequiresthat thecomponents(h,, k1,a1, e1)
satisfy three identities, one of which still h1 - a + A . k. = 0. Now, applying
TWTEM to ~, weget

(T~M)[~j](Ø
4hj+(DEØ4)A). _ +(4,4k

1+D1(4,
4)a)- —

a a
(77) +a

1- — +e~~—.
aA ay

Then, if we substituteinto

(78) ~EMf[da. dA+dA .

we obtain

f~EM(T~EM[~1]T~H,~M[~2])=

+D~(Ø
4)A]- [Ø4k

2+

(79) +D~(~
4)a) + a

1 e2— [~]}.

Part of Eq. (79) seemsto match the right handsideof Eq. (56) exactly. While
a

this is not true—since 4, depends upon A and Y and since ~l contalnsa~~ +

+ e. -~- — the differenceare irrelevant to the calculationsdone in going fromay
(56) to (58). Hence, we find

,ç~E

M(7~rEM[~

1]jEM[~)~
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= f(hi k~+ a1 - e2—h2 - k1 —a2- e1)

(80) ~EM(~1~2)

This showsthat ~-1EM is preserved~ and as it follows that&~
Mand [q~,EM]

aresymplecticmaps,andso the theoremis proved.

D) Commentson the LW Part of the York Map

As decribedin the standardreferences(e.g.Choquet-BruhatandYork [19801)’
the York procedurefor the Einstein-Maxwelltheory startswith data(A, a, A, Y)

in TTT.A(ox T*A (rather than in ~~M) and obtains data(~y,IT, A, Y) in (gEM by
solving

(81) Va(LW)~=— yaBb

for the vector field Wb where [(LW)~ : =V~Wb +Vbwa_ x~v.w]~then

solving

R 1 1 11Y2
(82) V24,= —4,—— (a+LW)-(a+LW)çf7+—r44,5——~— +B2

8 8~2 2 2L/1 ~

for 4,, and finally setting~ = Ø2A, IT = Ø4(a + LW) + .~-
11A’ r with A and Y

unchanged.We maydenotethis by a map

(83) ~EM:7-;T~XT*A+Cg

and we readilyshowthat onecanwrite

(84) O~EMOyEMOflEM

where

flEM:T*JfXT*A~
(85)

(A,a,A, Y) -÷(A,a+LW,A, ~

for Wsatisfying(81).
From a practicalstandpoint,it makessenseto includeflEM in the York map,

since the linear elliptic equation (81) is well-behaved,and it is much easierto
choosedata in T~TIIOx T*A than it is to choosedatain~0.Unfortunatelythe
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mapc~EMis not ®-invariant (6), and the space T~’7../1l0x T*A doesnot factor to a

symplectic manifold. We therefore have no well-defined reduced York map.

Moreover, it is unlikely thatq~EMitself is canonical.So, whileq~~Mis useful for

solving the full set of Einstein-Maxwell constraint equations, only the~1~M
portion of it is a symplecticmap.
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